Login / Signup

Electron Storage Capability and Singlet Oxygen Productivity of a RuII Photosensitizer Containing a Fused Naphthaloylenebenzene Moiety at the 1,10-Phenanthroline Ligand.

Yingya YangJannik BrückmannWolfgang FreySven RauMichael KarnahlStefanie Tschierlei
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
As a novel rylene type dye a diimine ligand with a fully rigid and extended π-system in its backbone was prepared by directly fusing a 1,10-phenanthroline building block with 1,8-naphthalimide. The corresponding heteroleptic ruthenium photosensitizer bearing one biipo and two tbbpy ligands was synthesized and extensively analyzed by a combination of NMR, single crystal X-ray diffraction, steady-state absorption and emission, time-resolved spectroscopy and different electrochemical measurements supported by time-dependent density functional theory calculations. The cyclic and differential pulse voltammograms revealed, that the naphthaloylenebenzene moiety enables an additional second reduction of the ligand. Moreover, this ligand possesses a very broad absorption in the visible region. In the RuII complex this causes an overlap of ligand-centered and metal-to-ligand charge transfer transitions. The emission of the complex is clearly redshifted compared to the ligand emission with very long-lived excited states lifetimes of 1.7 and 24.7 μs in oxygen-free acetonitrile solution. This behavior is accompanied by a surprisingly high oxygen sensitivity. Finally, this photosensitizer was successfully applied for the effective evolution of singlet oxygen challenging some of the common RuII prototype complexes.
Keyphrases