Login / Signup

Human metabolism of the semi-synthetic cannabinoids hexahydrocannabinol, hexahydrocannabiphorol and their acetates using hepatocytes and urine samples.

Karin LindbomCaitlyn NormanSteven R BaginskiLucas KrebsDarta StalbergaTobias RautioXiongyu WuRobert KronstrandHenrik Green
Published in: Drug testing and analysis (2024)
Hexahydrocannabinol (HHC), hexahydrocannabiphorol (HHCP) and their acetates, HHC-O and HHCP-O, respectively, are emerging in Europe as alternatives to tetrahydrocannabinol (THC). This study aimed to elucidate the metabolic pathways of the semi-synthetic cannabinoids HHC, HHCP, HHC-O and HHCP-O from incubation with human hepatocytes. The metabolites of HHC were also identified in authentic urine samples. HHC, HHCP, HHC-O and HHCP-O were incubated with primary human hepatocytes for 1, 3 and 5 h. Authentic urine samples from cases screened positive for cannabis in blood using ELISA but confirmed negative were analysed both non-hydrolysed and hydrolysed for HHC metabolites. Potential metabolites were identified using ultra-high performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight mass spectrometer (QToF-MS). HHC and HHCP were primarily metabolised through monohydroxylation (monoOH), followed by oxidation to a carboxylic acid metabolite. HHC-O and HHCP-O were rapidly metabolised to HHC and HHCP, respectively. In authentic urine samples, 18 different metabolites were identified, and 99.3% of hydroxylated metabolites were glucuronidated. 11-OH-HHC, 5'OH-HHC and another metabolite with a monoOH on the side chain were the only metabolites present in all 16 urine samples. The metabolism of HHC and HHCP were similar, although the longer alkyl side chain of HHCP (heptyl) led to greater hydroxylation on the side chain than HHC (pentyl). The use of HHC and HHCP can be differentiated from the use of THC and other phytocannabinoids, but the use of the acetate analogues may not be differentiable from their non-acetate analogues.
Keyphrases
  • ms ms
  • endothelial cells
  • mass spectrometry
  • multiple sclerosis
  • simultaneous determination
  • high resolution
  • hydrogen peroxide
  • climate change
  • nitric oxide
  • tandem mass spectrometry
  • liquid chromatography