Mechanism of Pyrazine Formation Intervened by Oxidized Methionines during Thermal Degradation of the Methionine-Glucose Amadori Compound.
Shibin DengYun ZhaiHeping CuiKhizar HayatXiaoming ZhangChi-Tang HoPublished in: Journal of agricultural and food chemistry (2022)
Methionine (Met) oxidation was observed during thermal degradation of methionine/glucose-derived Amadori rearrangement product (MG-ARP). The effects of oxidized methionine products, methionine sulfoxide (MetSO) and methionine sulfone (MetSO 2 ), on pyrazine yields of the MG-ARP model were investigated. The pyrazine contents in the MG-ARP/Met and MG-ARP/MetSO models were found lower compared to those in the MG-ARP/MetSO 2 model, and the inefficiency of pyrazine formation in the MG-ARP/Met model was proposed due to the fact that Met oxidation competitively inhibited the oxidation of dihydropyrazines for pyrazine formation in spite of relatively high methylglyoxal (MGO) content. The models of MGO mixed with Met, MetSO, or MetSO 2 were established for further investigation of the mechanism for the involvement of Met oxidation in pyrazine formation. It was observed that the aldolization or carbonyl-amine reaction of MetSO with MGO was another important reason for the inhibition of pyrazine formation, except for the competitive inhibition of oxidative formation of MetSO on dihydropyrazine oxidation, and the adduct of MGO-MetSO was identified by MS/MS. These results also accounted for the phenomenon of low pyrazine yields but high yields of long-chain substituted pyrazines, which were converted from dihydropyrazines with the aldehyde involvement.