FibroTest for Evaluating Fibrosis in Non-Alcoholic Fatty Liver Disease Patients: A Systematic Review and Meta-Analysis.
Yasaman ValiJenny A LeeJérôme BoursierRene SpijkerJoanne VerheijM Julia BrosnanQuentin Mark AnsteePatrick M BossuytMohammad Hadi Zafarmandnull On Behalf Of The Litmus Systematic Review TeamPublished in: Journal of clinical medicine (2021)
(1) Background: FibroTest™ is a multi-marker panel, suggested by guidelines as one of the surrogate markers with acceptable performance for detecting fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). A number of studies evaluating this test have been published after publication of the guidelines. This study aims to produce summary estimates of FibroTest™ diagnostic accuracy. (2) Methods: Five databases were searched for studies that evaluated FibroTest™ against liver biopsy as the reference standard in NAFLD patients. Two authors independently screened the references, extracted data, and assessed the quality of included studies. Meta-analyses of the accuracy in detecting different levels of fibrosis were performed using the bivariate random-effects model and the linear mixed-effects multiple thresholds model. (3) Results: From ten included studies, seven were eligible for inclusion in our meta-analysis. Five studies were included in the meta-analysis of FibroTest™ in detecting advanced fibrosis and five in significant fibrosis, resulting in an AUC of 0.77 for both target conditions. The meta-analysis of three studies resulted in an AUC of 0.69 in detecting any fibrosis, while analysis of three other studies showed higher accuracy in cirrhosis (AUC: 0.92). (4) Conclusions: Our meta-analysis showed acceptable performance (AUC > 0.80) of FibroTest™ only in detecting cirrhosis. We observed more limited performance of the test in detecting significant and advanced fibrosis in NAFLD patients. Further primary studies with high methodological quality are required to validate the reliability of the test for detecting different fibrosis levels and to compare the performance of the test in different settings.