Login / Signup

Comparative Analysis of the Gut Microbial Composition and Meat Flavor of Two Chicken Breeds in Different Rearing Patterns.

Jing SunYan WangNianzhen LiHang ZhongHengyong XuQing ZhuYi-Ping Liu
Published in: BioMed research international (2018)
The objective of the study is to compare the effects of free-range (FR) and cage-range (CR) breeding on gut microbiota and flavor compounds of Caoke (C) and Partridge Shank chickens (Q). A total of 120 experimental chickens were assigned to FR group and CR group; each group contain both 30 Caoke chickens and 30 Partridge Shank chickens. At 154 d old, 12 chickens of each group were selected and their cecal contents were extracted and examined for the composition of gut microbiota by illumina sequencing of the V3 region of the 16S rDNA genes, and flavor compounds were analyzed through headspace-solid-phase microextraction (HS-SPME) method. The results showed that, except for acids, the amount of flavor substances in the FR group was higher than those in the CR group, especially the content of Hexanal and D-limonene. Meanwhile, the higher concentrations of carbonyls including (E,E)-2,4-decadienal, (E)-2-decenal, (E)-2-octenal, and pentanal were in the FR chicken meat, but the differences in concentrations compared with CR were not significant. High levels of ethyl hexanoate and β-ocimene were only detected in FR groups. The Firmicutes had the highest proportion of chicken cecal microbiota, whereas the Fusobacteria was only detected in the cecal samples of Q chicken in FR group. Actinobacteria was more prevalent in FR groups than in CR groups. Meanwhile, in Q chickens, the proportions of Bacteroidetes and Proteobacteria in FR group were higher than those in CR group. Using MG-RAST Subsystem Technology, we found that some genes were associated with the formation of precursors of flavor compounds or with the metabolism and degradation of aromatic compounds. Overall, CR and FR breeding influenced the gut microbiota and flavor compounds, potentially because of the changes in diet and living conditions.
Keyphrases
  • heat stress
  • gene expression
  • high resolution
  • mass spectrometry
  • amino acid