Facets-Directed Epitaxially Grown Lead Halide Perovskite-Sulfobromide Nanocrystal Heterostructures and Their Improved Photocatalytic Activity.
Rajdeep DasAvijit PatraSumit Kumar DuttaSanjib ShyamalNarayan PradhanPublished in: Journal of the American Chemical Society (2022)
Lead halide perovskite nanocrystal heterostructures have been extensively studied in the recent past for improving their photogenerated charge carriers mobility. However, most of such heterostructures are formed with random connections without having strong evidence of epitaxial relation. Perovskite-chalcohalides are the first in this category, where all-inorganic heterostructures are formed with epitaxial growth. Going beyond one facet, herein, different polyhedral nanocrystals of CsPbBr 3 are explored for facet-selective secondary epitaxial sulfobromide growths. Following a decoupled synthesis process, the heterojunctions are selectively established along {110} as well as {200} facets of 26-faceted rhombicuboctahedrons, the {110} facets of armed hexapods, and the {002} facets of 12-faceted dodecahedron nanocrystals of orthorhombic CsPbBr 3 . Lattice matching induced these epitaxial growths, and their heterojunctions have been extensively studied with electron microscopic imaging. Unfortunately, these heterostructures did not retain the intense host emission because of their indirect band structures, but such combinations are found to be ideal for promoting photocatalytic CO 2 reduction. The pseudo-Type-II combination helped here in the successful movement of charge carriers and also improved the rate of catalysis. These results suggest that facet-selective all-inorganic perovskite heterostructures can be epitaxially grown and this could help in improving their catalytic activities.