Nonadiabatic Molecular Dynamics Simulations Provide Evidence for Coexistence of Planar and Nonplanar Intramolecular Charge Transfer Structures in Fluorazene.
Michał Andrzej KochmanPublished in: The journal of physical chemistry. A (2024)
Fluorazene is a model compound for photoinduced intramolecular charge transfer (ICT) between aromatic moieties. Despite intensive studies, both spectroscopic and theoretical, a complete model of its photophysics is still lacking. Especially controversial is the geometry of its ICT structure, or structures. In order to fill in the gaps in the state of knowledge on this important model system, in the present study I report the results of nonadiabatic molecular dynamics (NAMD) simulations of its photorelaxation process in acetonitrile solution. To afford a direct comparison to spectroscopic data, I use the simulation results as the basis for the calculation of the transient absorption (TA) spectrum. The NAMD simulations provide detailed information on the sequence of events during the excited-state relaxation of the title compound. Following initial photoexcitation into the bright S 2 state, the molecule undergoes rapid internal conversion into the S 1 state, leading to the locally excited (LE) structure. The LE structure, in turn, undergoes isomerization into a population of ICT structures, with geometries ranging from near-planar to markedly nonplanar. The LE → ICT isomerization reaction is accompanied by the decay of the characteristic excited-state absorption band of the LE structure near 2 eV. The anomalous fluorescence emission band of fluorazene is found to originate mainly from the near-planar ICT structures, in part because they dominate the overall population of ICT structures. Thus, the planar ICT (PICT) model appears to be the most appropriate description of the geometry of the ICT structure of fluorazene.