Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning.
Sebastian R Van der VoortFatih IncekaraMaarten M J WijnengaGeorgios KapsasRenske GahrmannJoost W SchoutenRishi Nandoe TewarieGeert J LycklamaPhilip C De Witt HamerRoelant Sjouke EijgelaarPim J FrenchHendrikus J DubbinkArnaud J P E VincentWiro J NiessenMartin J Van Den BentMarion SmitsStefan KleinPublished in: Neuro-oncology (2022)
We developed a method that non-invasively predicts multiple, clinically relevant features of glioma. Evaluation in an independent dataset shows that the method achieves a high performance and that it generalizes well to the broader clinical population. This first of its kind method opens the door to more generalizable, instead of hyper-specialized, AI methods.