Laser-machined micro-supercapacitors: from microstructure engineering to smart integrated systems.
Hongpeng LiJunhao LuoShumei DingJiabao DingPublished in: Nanoscale (2024)
With the rapid development of portable and wearable electronic devices, there is an increasing demand for miniaturized and lightweight energy storage devices. Micro-supercapacitors (MSCs), as a kind of energy storage device with high power density, a fast charge/discharge rate, and a long service life, have attracted wide attention in the field of energy storage in recent years. The performance of MSCs is mainly related to the electrodes, so there is a need to explore more efficient methods to prepare electrodes for MSCs. The process is cumbersome and time-consuming using traditional fabrication methods, and the development of laser micro-nano technology provides an efficient, high-precision, low-cost, and convenient method for fabricating supercapacitor electrodes, which can achieve finer mask-less nanofabrication. This work reviews the basics of laser fabrication of MSCs, including the laser system, the structure of MSCs, and the performance evaluation of MSCs. The application of laser micro-nanofabrication technology to MSCs and the integration of MSCs are analyzed. Finally, the challenges and prospects for the development of laser micro-nano technology for manufacturing supercapacitors are summarized.