Side-Chain-Type Anion Exchange Membranes Based on Poly(arylene ether sulfone)s Containing High-Density Quaternary Ammonium Groups.
Kaiqi WangZhenpeng ZhangSu LiHaibo ZhangNailin YueJinhui PangZhenhua JiangPublished in: ACS applied materials & interfaces (2021)
To obtain anion exchange membranes with both high ionic conductivity and good dimensional stability, a series of side-chain-type poly(arylene ether sulfone)s (PAES-QDTPM-x) were designed and synthesized. Quaternary ammonium (QA) groups were densely aggregated and grafted onto the main chain via flexible hydrophobic spacers. Well-defined microphase separation was confirmed by small-angle X-ray scattering. PAES-QDTPM-0.30 exhibited reasonably high conductivity (39.4 mS cm-1 at 20 °C and 76.1 mS cm-1 at 80 °C) and excellent dimensional stability at 80 °C (11.9% in length, 11.2% in thickness) due to the concentration of ion clusters and the side-chain-type structure. All membranes maintained over 82% of the conductivity after alkali treatment for 14 days. In the H2/O2 fuel cell performance test, the maximum power density of PAES-QDTPM-0.30 at 60 °C was 225.8 mW cm-2.