Generalizing movement patterns following shoulder fixation.
Rodrigo S MaedaJulia M ZdybalPaul L GribbleJ Andrew PruszynskiPublished in: Journal of neurophysiology (2020)
Generalizing newly learned movement patterns beyond the training context is challenging for most motor learning situations. Here we tested whether learning of a new physical property of the arm during self-initiated reaching generalizes to new arm configurations. Human participants performed a single-joint elbow reaching task and/or countered mechanical perturbations that created pure elbow motion with the shoulder joint free to rotate or locked by the manipulandum. With the shoulder free, we found activation of shoulder extensor muscles for pure elbow extension trials, appropriate for countering torques that arise at the shoulder due to forearm rotation. After locking the shoulder joint, we found a partial reduction in shoulder muscle activity, appropriate because locking the shoulder joint cancels the torques that arise at the shoulder due to forearm rotation. In our first three experiments, we tested whether and to what extent this partial reduction in shoulder muscle activity generalizes when reaching in different situations: 1) different initial shoulder orientation, 2) different initial elbow orientation, and 3) different reach distance/speed. We found generalization for the different shoulder orientation and reach distance/speed as measured by a reliable reduction in shoulder activity in these situations but no generalization for the different elbow orientation. In our fourth experiment, we found that generalization is also transferred to feedback control by applying mechanical perturbations and observing reflex responses in a distinct shoulder orientation. These results indicate that partial learning of new intersegmental dynamics is not sufficient for modifying a general internal model of arm dynamics.NEW & NOTEWORTHY Here we show that partially learning to reduce shoulder muscle activity following shoulder fixation generalizes to other movement conditions, but it does not generalize globally. These findings suggest that the partial learning of new intersegmental dynamics is not sufficient for modifying a general internal model of the arm's dynamics.