Progression from normal vessel wall to atherosclerotic plaque: lessons from an optical coherence tomography study with follow-up of over 5 years.
Ryo TakeshigeHiromasa OtakeHiroyuki KawamoriTakayoshi TobaYuichiro NaganoYoshiro TsukiyamaKen-Ichi YanakaHiroyuki YamamotoAkira NagasawaHiroyuki OnishiYoichiro SugizakiShinsuke NakanoYoichiro MatsuokaKosuke TanimuraKen-Ichi HirataPublished in: Heart and vessels (2021)
The initial process of atherosclerotic development has not been systematically evaluated. This study aimed to observe atherosclerotic progression from normal vessel wall (NVW) to atherosclerotic plaque and examine local factors associated with such progression using > 5-year long-term follow-up data obtained by serial optical coherence tomography (OCT). A total of 49 patients who underwent serial OCT for lesions with NVW over 5 years (average: 6.9 years) were enrolled. NVW was defined as a vessel wall with an OCT-detectable three-layer structure and intimal thickness ≤ 300 μm. Baseline and follow-up OCT images were matched, and OCT cross sections with NVW > 30° were enrolled. Cross sections were diagnosed as "progression" when the NVW in these cross sections was reduced by > 30° at > 5-year follow-up. Atherogenic progression from NVW to atherosclerotic plaque was observed in 40.8% of enrolled cross sections. The incidence of microchannels in an adjacent atherosclerotic plaque within the same cross section (6.7 vs. 3.3%; p = 0.046) and eccentric distribution of atherosclerotic plaque (25.0 vs. 12.6%; p < 0.001) at baseline was significantly higher in cross sections with progression than in those without. Cross sections with progression exhibited significantly higher NVW intimal thickness at baseline than cross sections without progression (200.1 ± 53.7 vs. 180.2 ± 59.6 μm; p < 0.001). Multivariate analysis revealed that the presence of microchannels in an adjacent atherosclerotic plaque, eccentric distribution of atherosclerotic plaque, and greater NVW intimal thickness at baseline were independently associated with progression at follow-up. The presence of microchannels in an adjacent atherosclerotic plaque, eccentric distribution of atherosclerotic plaque, and greater NVW intimal thickness were potentially associated with initial atherosclerotic development from NVW to atherosclerotic plaque.