Login / Signup

High Catalytic Performance of Au/Bi2O3 for Preferential Oxidation of CO in H2.

Jing ChenChanglai WangCichang ZongShi ChenPengcheng WangQianwang Chen
Published in: ACS applied materials & interfaces (2021)
Preferential oxidation (PROX) of CO in hydrogen is of great significance for proton exchange membrane fuel cells (PEMFCs) that need a CO-free hydrogen stream as fuel. The key technical problem is developing catalysts that can efficiently remove CO from the H2-rich stream within the working temperature range of PEMFCs. Herein, we design a Au/Bi2O3 interfacial catalyst for PROX with excellent catalytic performance, which can achieve 100% CO conversion in the PROX reaction over a wide temperature window (70-200 °C) and is perfectly compatible with the operating temperature window (80-180 °C) of PEMFCs. Moreover, the catalyst also demonstrates excellent high flow performance and long-term stability. Density functional theory (DFT) calculations reveal that the electrons transferring from Bi2O3 to Au and then to adsorbed perimeter CO and O2 molecules promote the activation of CO and O2, thus enhancing the catalytic performance of PROX.
Keyphrases