Login / Signup

CAMPYAIR, a New Selective, Differential Medium for Campylobacter spp. Isolation without the Need for Microaerobic Atmosphere.

Arturo LevicanArthur Hinton
Published in: Microorganisms (2022)
Campylobacter spp. are considered the most frequent bacterial cause of acute gastroenteritis worldwide. Although the diarrhea produced by these bacteria is self-limiting, the pathogen has been associated with severe long-term sequelae following acute signs and symptoms of the illness. However, research on Campylobacter is hampered by costs and technical requirements for isolating and culturing the bacterium, especially in low and middle-income countries. Therefore, attempts have been made to simplify these culture methods and to reduce costs associated with conducting research on Campylobacter . Recently, a liquid medium which allows selective enrichment of Campylobacter using aerobic incubation has been described. However, a solid medium is also needed for the isolation of pure colonies, enumeration of bacterial populations, and other studies on the pathogen. Therefore, a new medium (CAMPYAIR) was developed, based on the formulation of the liquid medium. CAMPYAIR is a solid chromogenic medium that supports the growth of Campylobacter isolates within 48 h of incubation in aerobic atmospheres. Moreover, CAMPYAIR contains antibiotic supplements with an enhanced ability to recover Campylobacter from environmental samples that may also contain non-campylobacter bacteria. The addition of the indicator 2,3,5-triphenyltetrazolium (TTC) to the medium differentiates Campylobacter from other bacteria growing on the media. The findings from studies on CAMPYAIR suggest that the utilization of the new selective, differential medium could help to reduce the costs, equipment, and technical training required for Campylobacter isolation from clinical and environmental samples.
Keyphrases
  • biofilm formation
  • antimicrobial resistance
  • candida albicans
  • pseudomonas aeruginosa
  • staphylococcus aureus
  • liver failure
  • drug induced
  • intensive care unit
  • ionic liquid
  • respiratory failure
  • virtual reality