FM 2 Path Planner for UAV Applications with Curvature Constraints: A Comparative Analysis with Other Planning Approaches.
Santiago GarridoJavier MuñozBlanca LópezFernando QuevedoConcepción A MonjeLuis E MorenoPublished in: Sensors (Basel, Switzerland) (2022)
This paper studies the Fast Marching Square (FM2) method as a competitive path planner for UAV applications. The approach fulfills trajectory curvature constraints together with a significantly reduced computation time, which makes it overperform with respect to other planning methods of the literature based on optimization. A comparative analysis is presented to demonstrate how the FM2 approach can easily adapt its performance thanks to the introduction of two parameters, saturation α and exponent β, that allow a flexible configuration of the paths in terms of curvature restrictions, among others. The main contributions of the method are twofold: first, a feasible path is directly obtained without the need of a later optimization process to accomplish curvature restrictions; second, the computation speed is significantly increased, up to 220 times faster than other optimization-based methods such as, for instance, Dubins, Euler-Mumford Elastica and Reeds-Shepp. Simulation results are given to demonstrate the superiority of the method when used for UAV applications in comparison with the three previously mentioned methods.
Keyphrases