Molecular mechanisms of homeostatic plasticity in central pattern generator networks.
Adam J NorthcuttDavid J SchulzPublished in: Developmental neurobiology (2019)
Central pattern generator (CPG) networks rely on a balance of intrinsic and network properties to produce reliable, repeatable activity patterns. This balance is maintained by homeostatic plasticity where alterations in neuronal properties dynamically maintain appropriate neural output in the face of changing environmental conditions and perturbations. However, it remains unclear just how these neurons and networks can both monitor their ongoing activity and use this information to elicit homeostatic physiological responses to ensure robustness of output over time. Evidence exists that CPG networks use a mixed strategy of activity-dependent, activity-independent, modulator-dependent, and synaptically regulated homeostatic plasticity to achieve this critical stability. In this review, we focus on some of the current understanding of the molecular pathways and mechanisms responsible for this homeostatic plasticity in the context of central pattern generator function, with a special emphasis on some of the smaller invertebrate networks that have allowed for extensive cellular-level analyses that have brought recent insights to these questions.