Login / Signup

Validation of a Denoising Method Using Deep Learning-Based Reconstruction to Quantify Multiple Sclerosis Lesion Load on Fast FLAIR Imaging.

Takayuki YamamotoC LacheretHikaru FukutomiR A KamraouiL DenatBei ZhangV H PrevostL ZhangAurélie RuetB TriaireVincent DoussetPierrick CoupéThomas Tourdias
Published in: AJNR. American journal of neuroradiology (2022)
Denoising using deep learning-based reconstruction helps to recognize multiple sclerosis lesions buried in the noise of accelerated FLAIR acquisitions, a possibly useful strategy to efficiently shorten the scan time in clinical practice.
Keyphrases
  • multiple sclerosis
  • deep learning
  • convolutional neural network
  • clinical practice
  • artificial intelligence
  • white matter
  • high resolution
  • machine learning
  • computed tomography
  • air pollution