Effects of transcranial direct current stimulation on brain changes and relation to cognition in patients with schizophrenia: a fMRI study.
Yong LiuHechun LiWei LiYiran WangJiangling JiangXinyi CaoTianhong ZhangYingying TangJijun WangDezhong YaoCheng LuoRobert C SmithChunbo LiPublished in: Brain imaging and behavior (2022)
We studied brain changes during an N-back task before and after 10 sessions of transcranial direct current stimulation (tDCS) and its relation to cognitive changes. This was a double-blind, sham-controlled, randomized study of tDCS in 27 patients with schizophrenia. They performed an N-back task in a 3 T scanner before and after receiving the 10 tDCS sessions. Cognitive performance outside the fMRI session was assessed using the MATRICS Consensus Cognitive Battery and other tests at baseline and several time points after 10 sessions of tDCS. During the N-back task performed during fMRI scans, comparing the 0-back vs. the 2-back task, the active tDCS group demonstrated a significantly increased activation in the right fusiform, left middle frontal, left inferior frontal gyrus (opercular part) and right inferior frontal gyrus (triangular part) and reduced activation in the left posterior cingulum gyrus with most of these results primarily due to increases in activation during the 0-back rather than 2-back task. There were also significant positive or negative correlations between some of the brain changes and cognitive performance. tDCS modulated prefrontal activation at low working memory load or attention mode, but default mode network at higher working memory load. Changes in brain activation measured during the N-back task were correlated with some dimensions of cognitive function immediately after 10 tDCS sessions and at follow-up times. The results support tDCS could offer a potential novel approach for modulating cortical activity and its relation to cognitive function.