Redox Homeostasis is Disturbed by Redox Cycling between Reactive Cysteines of Thioredoxin 1 and 9,10-Phenanthrenequinone, an Atmospheric Electron Acceptor.
Yumi AbikoKeiko TaguchiMiwa HisamoriKyoko Hiyoshi-AraiNho Cong LuongAkira ToribaYoshito KumagaiPublished in: Chemical research in toxicology (2022)
9,10-Phenanthrenequinone (9,10-PQ) is a toxicant in diesel exhaust particles and airborne particulate matter ≤2.5 μm in diameter. It is an efficient electron acceptor that readily reacts with dithiol compounds in vitro , resulting in the oxidation of thiol groups and concomitant generation of reactive oxygen species (ROS). However, it remains to be elucidated whether 9,10-PQ interacts with proximal protein dithiols. In the present study, we used thioredoxin 1 (Trx1) as a model of proteins with reactive proximal cysteines and examined whether it reacts with 9,10-PQ in cells and tissues, thereby affecting its catalytic activity and thiol status. Intratracheal injection of 9,10-PQ into mice resulted in protein oxidation and diminished Trx activity in the lungs. Using recombinant wild-type and C32S/C35S Trx1, we found that Cys32 and Cys35 selectively serve as electron donor sites for redox reactions with 9,10-PQ that lead to substantial inhibition of Trx activity. Addition of dithiothreitol restored the Trx activity inhibited by 9,10-PQ. Exposure of cultured cells to 9,10-PQ caused intracellular reactive oxygen species generation that led to protein oxidation, Trx1 dimerization, p38 phosphorylation, and apoptotic cell death. Overexpression of Trx1 blocked these 9,10-PQ-mediated events. These results suggest that the interaction of the reactive cysteines of Trx1 with 9,10-PQ causes oxidative stress, leading to disruption of redox homeostasis.
Keyphrases
- particulate matter
- reactive oxygen species
- cell death
- electron transfer
- cell cycle arrest
- induced apoptosis
- air pollution
- oxidative stress
- wild type
- hydrogen peroxide
- solar cells
- dna damage
- amino acid
- endoplasmic reticulum stress
- adipose tissue
- transcription factor
- small molecule
- ultrasound guided
- high intensity
- endothelial cells
- heat stress
- nitric oxide