Identification and Characterization of Downy Mildew-Responsive microRNAs in Indian Vitis vinifera by High-Throughput Sequencing.
Milan V KambleAbhishek B ShahapurkarShivakantkumar AdhikariNagaraja GeethaAsad SyedBilal AhmedSudisha JogaiahPublished in: Journal of fungi (Basel, Switzerland) (2021)
Downy mildew (DM) is one of the most devastating diseases disturbing viticulture, mainly during temperate and humid climates. The DM pathogen can attack grapevine leaves and berries differentially, and the disease is managed with recurring applications of fungicides that direct pathogen pressure, develop of resistant strains, and lead to residual soil toxicity and increased pollution effects. Plant microRNAs (miRNAs) are important candidates in physiological regulatory roles in response to biotic stress in plants. In this study, high-throughput sequencing and MiRDeep-P were employed to identify miRNAs in Vitis vinifera. Altogether, 22,492,910, 25,476,471, and 22,448,438 clean reads from the sterile distilled water (SDW)-control, bio-pesticide Trichoderma harzianum (TriH_JSB36)-treated, and downy mildew Plasmopara viticola pathogen libraries, respectively, were obtained. On the basis of the sequencing results and analysis (differential expression analysis), we observed significant differences in 15 miRNAs (5 novel upregulated, and 10 known downregulated) in the pathogen-infected sample (Test) in comparison to the SDW-control sample, with majority of the reads beingin the range of 20-24 bp. This study involves the identification and characterization of vvi-miRNAs that are involved in resistance against downy mildew disease in grapes.