Login / Signup

Low-Temperature H2 Reduction of Copper Oxide Subnanoparticles.

Kazutaka SonobeMakoto TanabeTakane ImaokaWang-Jae ChunKimihisa Yamamoto
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Subnanoparticles (SNPs) with sizes of approximately 1 nm are attractive for enhancing the catalytic performance of transition metals and their oxides. Such SNPs are of particular interest as redox-active catalysts in selective oxidation reactions. However, the electronic states and oxophilicity of copper oxide SNPs are still a subject of debate in terms of their redox properties during oxidation reactions for hydrocarbons. In this work, in situ X-ray absorption fine structure (XAFS) measurements of Cu28 Ox SNPs, which were prepared by using a dendritic phenylazomethine template, during temperature-programmed reduction (TPR) with H2 achieved lowering of the temperature (T50 =138 °C) reported thus far for the CuII →CuI reduction reaction because of Cu-O bond elongation in the ultrasmall copper oxide particles.
Keyphrases