Login / Signup

Modulation of vitamin d status and dietary calcium affects bone mineral density and mineral metabolism in göttingen minipigs.

Katharina E Scholz-AhrensClaus-Christian GlüerFelix BronnerGünter DellingYahya AçilHans-Jürgen HahneJoachim HassenpflugWolfram TimmJürgen Schrezenmeir
Published in: ISRN rheumatology (2013)
Calcium and vitamin D deficiency impairs bone health and may cause rickets in children and osteomalacia in adults. Large animal models are useful to study experimental osteopathies and associated metabolic changes. We intended to modulate vitamin D status and induce nutritional osteomalacia in minipigs. The control group (n = 9) was fed a semisynthetic reference diet with 6 g calcium and 6,500 IU vitamin D3/kg and the experimental group (n = 10) the same diet but with only 2 g calcium/kg and without vitamin D. After 15 months, the deficient animals were in negative calcium balance, having lost bone mineral density significantly (means ± SEM) with -51.2 ± 14.7 mg/cm(3) in contrast to controls (-2.3 ± 11.8 mg/cm(3)), whose calcium balance remained positive. Their osteoid surface was significantly higher, typical of osteomalacia. Their plasma 25(OH)D dropped significantly from 60.1 ± 11.4 nmol/L to 15.3 ± 3.4 nmol/L within 10 months, whereas that of the control group on the reference diet rose. Urinary phosphorus excretion and plasma 1,25-dihydroxyvitamin D concentrations were significantly higher and final plasma calcium significantly lower than in controls. We conclude that the minipig is a promising large animal model to induce nutritional osteomalacia and to study the time course of hypovitaminosis D and associated functional effects.
Keyphrases