Quantifying He fluxes from the mantle using multi-tracer data assimilation.
Reiner SchlitzerPublished in: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences (2017)
A global, coarse-resolution ocean model previously fitted to geostrophic shear estimates and to data of 10 hydrographic parameters and tracers has been used to simulate the 3He and 4He distributions resulting from the release of mantle helium from mid-ocean ridges. The model is in very good agreement with 14C and chlorofluorocarbon data and has realistic global ocean overturning strength as well as water mass formation and transport rates. It is found that previously published global mantle 3He fluxes are too high by a factor of about 2. In the model, optimal agreement of modelled δ3He with data is achieved for a global flux of 450 ± 50 mol 3He yr-1 The formulation of He source strengths proportional to ridge spreading rates appears compatible with data. A model/data misfit analysis shows significant and large-scale δ3He underestimation in the southwestern Pacific centred over the Lau Backarc Basin (approx. 179° W/20° S). These misfits disappear in a set-up with 30 of the 450 mol yr-1 global total 3He flux released in the Lau Basin over a depth range between 1250 and 2500 m. Such He flux contributions are missing in present mantle He source compilations. Hydrothermal fluxes of other trace elements and isotopes (TEI) can be calculated from He fluxes on the basis of TEI : He ratios measured close to the sources.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.