Fine mapping for double podding gene in chickpea.
L AliA DeokarC CaballoB Tar'anJ GilW ChenTeresa MillánJ RubioPublished in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2015)
For the first time, fine mapping for sfl locus was carried out using a battery of new STMS and SNP markers. The target region was delimited to 92.6 Kb where seven annotated genes were found that could be candidate genes for the simple/double podding trait in chickpea. Four recombinant inbred populations (RIP-1, RIP-7, RIP-11, and CPR-01) were used to map the double podding gene (sfl) in chickpea. In RIP-1, the gene was initially mapped on linkage group (LG) 6 between the two sequence-tagged microsatellite site (STMS) markers TA120 and TR1. Eight new STMS markers were added onto LG6 in the target region and sfl locus was finally located between CAGM27819 and CAGM27777 markers within an interval of 2 cM. Seven out of the eight markers were mapped in RIP-7 and its reciprocal RIP-11 confirming the location of the sfl locus to a 4.8 cM interval flanked by TR44 and CAGM27705. Furthermore, using a high-density single nucleotide polymorphism (SNP) map of CPR-01, sfl was mapped to the same genomic region in a 5.1 cM interval between TR44 and the SNP scaffold1646p97220. Five pairs of near isogenic lines (NILs) and eight recombinant inbred lines (RILs) were used to refine this region in the chickpea physical map. Combining data from linkage analysis in four RIPs, marker physical positions and recombination events obtained in both pairs of NILs and selected RILs, sfl could be placed within a genomic window of 92.6 Kb. Seven annotated genes were extracted from this region. The regulator of axillary meristem-predicted gene could be a candidate gene for the simple/double podding gene. This study provides additional set of markers flanking and tightly linked to sfl locus that are useful for marker-assisted selection.
Keyphrases
- genome wide
- high density
- copy number
- genome wide identification
- dna methylation
- cardiac arrest
- transcription factor
- physical activity
- genome wide analysis
- squamous cell carcinoma
- high resolution
- gene expression
- early stage
- dna damage
- genetic diversity
- air pollution
- lymph node
- oxidative stress
- dna repair
- hepatitis c virus
- human immunodeficiency virus
- data analysis
- men who have sex with men
- hiv testing