Enantioselective Ni/N-Heterocyclic Carbene-Catalyzed Redox-Economical Coupling of Aldehydes, Alkynes, and Enones for Rapid Construction of Acyclic All-Carbon Quaternary Stereocenters.
Wu-Bin ZhangGuang ChenShi-Liang ShiPublished in: Journal of the American Chemical Society (2021)
Acyclic quaternary carbon stereocenters exist widely in natural products and bioactive molecules, but their enantioselective construction remains a prominent challenge. In particular, multicomponent enantioselective couplings of simple precursors to acyclic all-carbon quaternary stereocenters are very rare. We describe herein an N-heterocyclic carbene (NHC)-Ni catalyzed redox-economical three-component reaction of aldehydes, alkynes, and enones that proceeds in a highly chemo-, regio-, and enantioselective manner. A wide variety of valuable acyclic α-quaternary chiral ketones were synthesized in a single step with 100% atom economy. This reaction proceeds through the formation of a transient cyclic enolate followed by an aldol reaction/ring-opening sequence. The strategy is expected to inspire new and efficient approaches to generate other acyclic quaternary stereocenters.