A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes.
Joshua T MaxwellLothar A BlatterPublished in: The Journal of physiology (2017)
In atrial myocytes Ca2+ release during excitation-contraction coupling (ECC) is strikingly different from ventricular myocytes. In many species atrial myocytes lack a transverse tubule system, dividing the sarcoplasmic reticulum (SR) Ca2+ store into the peripheral subsarcolemmnal junctional (j-SR) and the much more abundant central non-junctional (nj-SR) SR. Action potential (AP)-induced Ca2+ entry activates Ca2+ -induced Ca2+ release (CICR) from j-SR ryanodine receptor (RyR) Ca2+ release channels. Peripheral elevation of [Ca2+ ]i initiates CICR from nj-SR and sustains propagation of CICR to the cell centre. Simultaneous confocal measurements of cytosolic ([Ca2+ ]i ; with the fluorescent Ca2+ indicator rhod-2) and intra-SR ([Ca2+ ]SR ; fluo-5N) Ca2+ in rabbit atrial myocytes revealed that Ca2+ release from j-SR resulted in a cytosolic Ca2+ transient of higher amplitude compared to release from nj-SR; however, the degree of depletion of j-SR [Ca2+ ]SR was smaller than nj-SR [Ca2+ ]SR . Similarly, Ca2+ signals from individual release sites of the j-SR showed a larger cytosolic amplitude (Ca2+ sparks) but smaller depletion (Ca2+ blinks) than release from nj-SR. During AP-induced Ca2+ release the rise of [Ca2+ ]i detected at individual release sites of the nj-SR preceded the depletion of [Ca2+ ]SR , and during this latency period a transient elevation of [Ca2+ ]SR occurred. We propose that Ca2+ release from nj-SR is activated by cytosolic and luminal Ca2+ (tandem RyR activation) via a novel 'fire-diffuse-uptake-fire' (FDUF) mechanism. This novel paradigm of atrial ECC predicts that Ca2+ uptake by sarco-endoplasmic reticulum Ca2+ -ATPase (SERCA) at the propagation front elevates local [Ca2+ ]SR , leading to luminal RyR sensitization and lowering of the activation threshold for cytosolic CICR.