Constraints on fundamental physical constants from bio-friendly viscosity and diffusion.
Kostya TrachenkoPublished in: Science advances (2023)
The problem of understanding fundamental physical constants and their values was discussed in particle physics, astronomy, and cosmology. Here, I show that an additional unexpected insight comes from condensed matter physics and liquid physics in particular: Fundamental constants have a biofriendly window constrained by biofriendly viscosity and diffusion setting the motion in essential life processes in and across cells. I also show that bounds on viscosity, diffusion, and the fundamental velocity gradient in a biochemical machine can all be varied while keeping the fine-structure constant and the proton-to-electron mass ratio intact, with no implication for the production of heavy nuclei in stars. This leads to a conjecture of multiple tuning and an evolutionary mechanism.