Login / Signup

Information geometry and Bose-Einstein condensation.

Pedro Pessoa
Published in: Chaos (Woodbury, N.Y.) (2023)
It is a long held conjecture in the connection between information geometry (IG) and thermodynamics that the curvature endowed by IG diverges at phase transitions. Recent work on the IG of Bose-Einstein (BE) gases challenged this conjecture by saying that in the limit of fugacity approaching unit-where BE condensation is expected-the curvature does not diverge; rather, it converges to zero. However, as the discontinuous behavior that identifies condensation is only observed at the thermodynamic limit, a study of the IG curvature at a finite number of particles, N, is in order from which the thermodynamic behavior can be observed by taking the thermodynamic limit ( N→∞) posteriorly. This article presents such a study. We find that for a trapped gas, as N increases, the values of curvature decrease proportionally to a power of N, while the temperature at which the maximum value of curvature occurs approaches the usually defined critical temperature. This means that, in the thermodynamic limit, the curvature has a limited value where a phase transition is observed, contradicting the forementioned conjecture.
Keyphrases
  • aqueous solution
  • healthcare
  • gene expression
  • genome wide
  • room temperature