6-Formylindolo[3,2-b]carbazole, a potent ligand for the aryl hydrocarbon receptor, attenuates concanavalin-induced hepatitis by limiting T-cell activation and infiltration of proinflammatory CD11b+ Kupffer cells.
Alkeiver S CannonBryan L HollomanKiesha WilsonKathryn MirandaPrakash S NagarkattiMitzi NagarkattiPublished in: Journal of leukocyte biology (2024)
FICZ (6-formylindolo[3,2-b]carbazole) is a potent aryl hydrocarbon receptor agonist that has a poorly understood function in the regulation of inflammation. In this study, we investigated the effect of aryl hydrocarbon receptor activation by FICZ in a murine model of autoimmune hepatitis induced by concanavalin A. High-throughput sequencing techniques such as single-cell RNA sequencing and assay for transposase accessible chromatin sequencing were used to explore the mechanisms through which FICZ induces its effects. FICZ treatment attenuated concanavalin A-induced hepatitis, evidenced by decreased T-cell infiltration, decreased circulating alanine transaminase levels, and suppression of proinflammatory cytokines. Concanavalin A revealed an increase in natural killer T cells, T cells, and mature B cells upon concanavalin A injection while FICZ treatment reversed the presence of these subsets. Surprisingly, concanavalin A depleted a subset of CD55+ B cells, while FICZ partially protected this subset. The immune cells showed significant dysregulation in the gene expression profiles, including diverse expression of migratory markers such as CCL4, CCL5, and CXCL2 and critical regulatory markers such as Junb. Assay for transposase accessible chromatin sequencing showed more accessible chromatin in the CD3e promoter in the concanavalin A-only group as compared to the naive and concanavalin A-exposed, FICZ-treated group. While there was overall more accessible chromatin of the Adgre1 (F4/80) promoter in the FICZ-treated group, we observed less open chromatin in the Itgam (CD11b) promoter in Kupffer cells, supporting the ability of FICZ to reduce the infiltration of proinflammatory cytokine producing CD11b+ Kupffer cells. Taken together, these data demonstrate that aryl hydrocarbon receptor activation by FICZ suppresses liver injury through the limitation of CD3+ T-cell activation and CD11b+ Kupffer cell infiltration.
Keyphrases
- single cell
- transcription factor
- liver injury
- drug induced
- gene expression
- induced apoptosis
- genome wide
- dna damage
- dna methylation
- nk cells
- high throughput
- rna seq
- cell cycle arrest
- oxidative stress
- multiple sclerosis
- machine learning
- binding protein
- high resolution
- endoplasmic reticulum stress
- electronic health record
- big data
- cell proliferation
- high throughput sequencing
- minimally invasive
- mesenchymal stem cells
- ultrasound guided
- combination therapy
- atomic force microscopy
- single molecule
- endothelial cells