Login / Signup

Iterative improvement in the automatic modular design of robot swarms.

Jonas KucklingThomas StützleMauro Birattari
Published in: PeerJ. Computer science (2020)
Iterative improvement is an optimization technique that finds frequent application in heuristic optimization, but, to the best of our knowledge, has not yet been adopted in the automatic design of control software for robots. In this work, we investigate iterative improvement in the context of the automatic modular design of control software for robot swarms. In particular, we investigate the optimization of two control architectures: finite-state machines and behavior trees. Finite state machines are a common choice for the control architecture in swarm robotics whereas behavior trees have received less attention so far. We compare three different optimization techniques: iterative improvement, Iterated F-race, and a hybridization of Iterated F-race and iterative improvement. For reference, we include in our study also (i) a design method in which behavior trees are optimized via genetic programming and (ii) EvoStick, a yardstick implementation of the neuro-evolutionary swarm robotics approach. The results indicate that iterative improvement is a viable optimization algorithm in the automatic modular design of control software for robot swarms.
Keyphrases
  • image quality
  • deep learning
  • machine learning
  • healthcare
  • primary care
  • dual energy
  • genome wide
  • neural network
  • data analysis
  • copy number