Understanding the biological role of PqqB in Pseudomonas stutzeri using molecular dynamics simulation approach.
Prassan ChoudharyArpan BhowmikHillol ChakdarMohammad Aqueel KhanChandrabose SelvarajSanjeev Kumar SinghKumar MuruganSunil KumarAnil Kumar SaxenaPublished in: Journal of biomolecular structure & dynamics (2020)
Phosphate solubilization is an important and widely studied plant growth promoting trait exhibited by many bacteria. Pyrroloquinoline quinone (PQQ), a redox cofactor of methanol and glucose dehydrogenases has been well established as essential for phosphate solubilization. PQQ operon has been well studied in growth promoting rhizobacteria like Pseudomonas spp., Gluconobacter oxydans, Klebsiella pneumoniae, etc. However, the role of PqqB is quite ambiguous as its functional role has been contradicted in many studies. In the present study, we selected Pseudomonas stutzeri - a well-known P solubilizing bacterium as a representative species of the Pseudomonas genus on the basis of phylogenetic and statistical analyses of PqqB proteins. A 3 D model was generated for this protein. Docking of PqqB with PQQ showed good interaction with a theoretical binding affinity of -7.4 kcal/mol. On the other hand, docking of PqqC with 3a-(2-amino-2-carboxy-ethyl)-4,5-dioxo-4,5,6,7,8,9-hexahydro-quinoline-7,9-dicarboxylic acid (AHQQ, immediate precursor of PQQ) showed strong interaction (-10.4 kcal/mol) but the same was low with PQQ (-6.4 kcal/mol). Molecular dynamic simulation of both the complexes showed stable conformation. The binding energy of PqqB-PQQ complex (-182.710 ± 16.585 kJ/mol) was greater than PqqC-PQQ complex (-166.114 ± 12.027 kJ/mol). The results clearly indicated that kinetically there is a possibility that after cyclization of AHQQ to PQQ by PqqC, PQQ can be taken up by PqqB and transported to periplasm for the oxidation of glucose. To the best of our knowledge, this is the first attempt to understand the biological role of PqqB on the basis of molecular interactions and dynamics.Communicated by Ramaswamy H. Sarma.
Keyphrases
- plant growth
- molecular dynamics simulations
- klebsiella pneumoniae
- molecular docking
- biofilm formation
- healthcare
- protein protein
- molecular dynamics
- type diabetes
- binding protein
- adipose tissue
- gene expression
- ionic liquid
- mass spectrometry
- hydrogen peroxide
- blood pressure
- genome wide
- cystic fibrosis
- genetic diversity
- amino acid