Login / Signup

Field-Dependent Reduced Ion Mobilities of Positive and Negative Ions in Air and Nitrogen in High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS).

Maria AllersAnsgar T KirkChristoph SchaeferDuygu ErdogduWalter WissdorfThorsten BenterStefan Zimmermann
Published in: Journal of the American Society for Mass Spectrometry (2020)
In High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS), ions are formed in a reaction region and separated in a drift region, which is similar to classical drift tube ion mobility spectrometers (IMS) operated at ambient pressure. However, in contrast to the latter, the HiKE-IMS is operated at a decreased background pressure of 10-40 mbar and achieves high reduced electric field strengths of up to 120 Td in both the reaction and the drift region. Thus, the HiKE-IMS allows insights into the chemical kinetics of ion-bound water cluster systems at effective ion temperatures exceeding 1000 K, although it is operated at the low absolute temperature of 45 °C. In this work, a HiKE-IMS with a high resolving power of RP = 140 is used to study the dependence of reduced ion mobilities on the drift gas humidity and the effective ion temperature for the positive reactant ions H3O+(H2O)n, O2+(H2O)n, NO+(H2O)n, NO2+(H2O)n, and NH4+(H2O)n, as well as the negative reactant ions O2-(H2O)n, O3-(H2O)n, CO3-(H2O)n, HCO3-(H2O)n, and NO2-(H2O)n. By varying the reduced electric field strength in the drift region, cluster transitions are observed in the ion mobility spectra. This is demonstrated for the cluster systems H3O+(H2O)n and NO+(H2O)n.
Keyphrases
  • quantum dots
  • aqueous solution
  • high resolution
  • gas chromatography