Unprecedented Application of Covalent Organic Frameworks for Polymerization Catalysis: Rh/TPB-DMTP-COF in Polymerization of Phenylacetylene and Its Functional Derivatives.
Qingbin CaoShaowen ZhangLi ZhangFei GaoJupeng ChenYuping DongXiaofang LiPublished in: ACS applied materials & interfaces (2021)
Covalent organic frameworks (COFs) are applied widely in organic catalysis; however, no precedent has been reported in polymerization catalysis. Herein, we report the new application of COFs for polymerization catalysis. Different amounts of homogeneous Rh catalyst are incorporated into the COF via post-treatment to give a series of TPB-DMTP-COF-X wt % Rh (b-e) containing varying amounts of Rh from 2.74 to 11.38 wt %. In contrast to the known Rh catalysts, TPB-DMTP-COF-X wt % Rh (b-e) display an uncommon synergistic effect and exceptional steric confinement effect of nanochannels. Therefore, they possess the advantages of both homogeneous catalysts in high activity and selectivity and heterogeneous catalysts in stability and recyclability with extremely high activity up to 1.3 × 107 g·molRh-1·h-1 and cis-selectivity up to 99% and can be readily recycled and reused five times in the polymerization of phenylacetylene and its derivatives, affording cis-transoidal polyphenylacetylene and its derivatives having helical structures, aggregation-induced emission properties, or fluorescence properties with narrow molecular weight distributions.