Femoral Tunnel Geometry and Graft Inclination Angles in Anterior Cruciate Ligament Reconstruction Using a Flexible Reamer System.
Dhong-Won LeeDong-Hwan LeeSung-Gyu MoonJi-Hee KangYoung-Je WooWoo Jong KimPublished in: Medicina (Kaunas, Lithuania) (2023)
Background and Objectives : The aim of this study is to investigate the femoral tunnel geometry (femoral tunsnel location, femoral graft bending angle, and femoral tunnel length) on three-dimensional (3D) computed tomography (CT) and graft inclination on magnetic resonance imaging (MRI) after anatomic anterior cruciate ligament (ACL) reconstruction using a flexible reamer system. Materials and Methods : A total of 60 patients who underwent anatomical ACL reconstruction (ACLR) using a flexible reamer system were retrospectively reviewed. One day after the ACLR procedure was performed, all patients underwent three-dimensional computed tomography (3D-CT) and magnetic resonance imaging (MRI). The femoral tunnel location, femoral graft bending angle, femoral tunnel length, and graft inclination were assessed. Results : In the 3D-CTs, the femoral tunnel was located at 29.7 ± 4.4% in the posterior to anterior (deep to shallow) direction and at 24.1 ± 5.9% in the proximal to distal (high to low) direction. The mean femoral graft bending angle was 113.9 ± 5.7°, and the mean femoral tunnel length was 35.2 ± 3.1 mm. Posterior wall breakage was observed in five patients (8.3%). In the MRIs, the mean coronal graft inclination was 69.2 ± 4.7°, and the mean sagittal graft inclination was 52.4 ± 4.6°. The results of this study demonstrated that a comparable femoral graft bending angle and longer femoral tunnel length were observed compared with the reported outcomes from previous studies that used the rigid reamer system. Conclusions : ACLR using a flexible reamer system allowed for an anatomic femoral tunnel location and a comparable graft inclination to that of the native ACL. In addition, it achieved a tolerable femoral graft bending angle and femoral tunnel length.