DNAzyme-controlled plasmonic coupling for SERS-based determination of Salmonella typhimurium using hybridization chain reaction self-assembled G-quadruplex.
Wanqing XuXueqi LengTong JinSu LiuJiadong HuangJiadong HuangPublished in: Mikrochimica acta (2022)
A facile and rapid SERS strategy for S. typhimurium detection based on hybridization chain reaction (HCR) self-assembled G-quadruplex DNAzyme (GQH DNAzyme)-controlled plasmonic coupling was developed. GQH DNAzyme is introduced as a biocatalyst to catalyze the oxidation of L-cysteines to cysteines (thiols to disulfides) to assist SERS signal transduction. This is the first time that the self-assembled split GQH DNAzyme-controlled plasmonic coupling is integrated with SERS sensing. The results reveal the proposed SERS strategy can quantify S. typhimurium with a wide linear range (5 to 10 5 cfu mL -1 ) and a low detection limit (4 cfu mL -1 ; n = 5, mean ± standard deviation) and RSD of 7%. The method exhibited preeminent detection performance in spiked samples with recoveries of 93.1-117%. The proposed strategy has great potential for being a versatile SERS platform for detecting a wide spectrum of analytes by replacing them with the corresponding recognition elements. Therefore, this study not only creates a practical platform for pathogenic bacteria identification and related food safety testing and environmental monitoring, but also provides a new paradigm for building SERS sensor. A facile and rapid SERS strategy for S. Typhimurium detection based on hybridization chain reaction (HCR) self-assembled G-quadruplex DNAzyme-controlled plasmonic coupling.