Dynamic Response of Ion Transport in Nanoconfined Electrolytes.
Zengming ZhangChenkun LiJianbo ZhangMichael H EikerlingJun HuangPublished in: Nano letters (2023)
Ion transport in nanoconfined electrolytes exhibits nonlinear effects caused by large driving forces and pronounced boundary effects. An improved understanding of these impacts is urgently needed to guide the design of key components of the electrochemical energy systems. Herein, we employ a nonlinear Poisson-Nernst-Planck theory to describe ion transport in nanoconfined electrolytes coupled with two sets of boundary conditions to mimic different cell configurations in experiments. A peculiar nonmonotonic charging behavior is discovered when the electrolyte is placed between a blocking electrode and an electrolyte reservoir, while normal monotonic behaviors are seen when the electrolyte is placed between two blocking electrodes. We reveal that impedance shapes depend on the definition of surface charge and the electrode potential. Particularly, an additional arc can emerge in the intermediate-frequency range at potentials away from the potential of zero charge. The obtained insights are instrumental to experimental characterization of ion transport in nanoconfined electrolytes.