Login / Signup

Nanoparticles for combined photo- and chemodynamic therapy of cancer cells involving endogenous glutathione depletion.

Ashi MittalMonika YadavLargee BiswasAnita Kamra VermaIndrajit Roy
Published in: Nanomedicine (London, England) (2023)
Background: Reactive oxygen species (ROS) are powerful weapons for various anticancer therapies. However, high glutathione (GSH) levels in cancer cells can significantly reduce the efficacy of such therapies. Methods: In this study, pH-responsive fluorescein-encapsulated zeolitic imidazolate framework-8 nanoparticles were synthesized for ROS-mediated combination therapy. Results: Upon blue light activation, fluorescein displayed a high singlet oxygen photogeneration ability for photodynamic therapy. Concurrently, accumulated Zn 2+ from degraded zeolitic imidazolate framework-8 stimulated simultaneous ROS generation and GSH depletion, thereby successfully inducing chemodynamic therapy. This triggered a cascade of photo-physical and chemical processes culminating in the localized generation of ROS, ultimately breaking the intracellular redox equilibrium. Conclusion: This nanoformulation can potentially be used for light-activated ROS-mediated therapy for the management of superficial tumors.
Keyphrases