Login / Signup

The impact of various substrates, ceramic shades, and brands on the ultimate color and masking capacity of highly translucent monolithic zirconia: an in vitro study.

Elham AnsarifardMasumeh TaghvaSeyed Ali MosaddadMarzieh Akhlaghian
Published in: Odontology (2024)
This study aimed to examine the impact of substrates, ceramic shades, and brands on the color and masking ability of highly translucent monolithic zirconia (HTMZ) using CIELab and CIEΔE2000 metrics. A total of 156 1-mm thick HTMZ disks in shades A1, A2, and A3 were produced using Dental Direkt and Kerox zirconia brands. Four 3-mm thick substrates (nickel-chromium alloy, non-precious gold alloy (NPG), zirconia shade A2, and resin composite shade A2) were prepared. HTMZ disks were overlaid on these substrates, and color measurements were taken with a spectrophotometer. Color differences (ΔE) were analyzed using CIELab and CIEΔE2000 formulas. The influence of brand, shade, substrate, and their interactions on ΔE values was assessed with a General Linear Model (GLM) and LSD pairwise comparison test. Spearman's correlation test examined the relationship between CIELab and CIEΔE2000 values. Results indicated that ΔEab was significantly influenced by substrate type and shade, while ΔE2000 was also affected by the ceramic brand. Mean color differences across ceramic-substrate groups were within clinically acceptable and perceptible ranges (clinically perceptible: ∆Eab ≥ 1.3 and ∆E2000 ≥ 0.8; clinically acceptable: 0.8 < ∆E2000 ≤ 1.8 and 1.3 < ∆Eab ≤ 2.7), except for NPG, which had ΔE values exceeding the perceptible range (ΔE2000: 1.1 ± 0.11 to 1.8 ± 0.31; ΔEab: 1.61 ± 0.15 to 2.16 ± 0.36). A significant correlation (r = 0.974, P < 0.001) was found between ΔEab and ΔE2000. Various ceramic brands and shades led to notable ΔE variations, yet average color differences within all ceramic-substrate groups remained clinically acceptable. Both ΔEab and ΔE2000 were reliable methods with a strong correlation for measuring color differences.
Keyphrases
  • mass spectrometry
  • amino acid
  • gold nanoparticles
  • silver nanoparticles
  • tandem mass spectrometry