Login / Signup

Faster clinical decisions in B-cell acute lymphoblastic leukaemia: A single flow cytometric 12-colour tube improves diagnosis and minimal residual disease follow-up.

Benjamin LebecqueJoevin BesombesLouis-Thomas DannusMarie De AntonioVictoria CacheuxVictoria GrèzeValentin MontagnonLauren VeroneseAndrei TchirkovOlivier TournilhacMarc G BergerRichard Veyrat-Masson
Published in: British journal of haematology (2024)
Assessing minimal residual disease (MRD) in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) is essential for adjusting therapeutic strategies and predicting relapse. Quantitative polymerase chain reaction (qPCR) is the gold standard for MRD. Alternatively, flow cytometry is a quicker and cost-effective method that typically uses leukaemia-associated immunophenotype (LAIP) or different-from-normal (DFN) approaches for MRD assessment. This study describes an optimized 12-colour flow cytometry antibody panel designed for BCP-ALL diagnosis and MRD monitoring in a single tube. This method robustly differentiated hematogones and BCP-ALL cells using two specific markers: CD43 and CD81. These and other markers (e.g. CD73, CD66c and CD49f) enhanced the specificity of BCP-ALL cell detection. This innovative approach, based on a dual DFN/LAIP strategy with a principal component analysis method, can be used for all patients and enables MRD analysis even in the absence of a diagnostic sample. The robustness of our method for MRD monitoring was confirmed by the strong correlation (r = 0.87) with the qPCR results. Moreover, it simplifies and accelerates the preanalytical process through the use of a stain/lysis/wash method within a single tube (<2 h). Our flow cytometry-based methodology improves the BCP-ALL diagnosis efficiency and MRD management, offering a complementary method with considerable benefits for clinical laboratories.
Keyphrases