Login / Signup

The influences of correlated spatially random perturbations on first passage time in a linear-cubic potential.

Yongge LiYong XuJuergen KurthsJinqiao Duan
Published in: Chaos (Woodbury, N.Y.) (2019)
The influences of correlated spatially random perturbations (SRPs) on the first passage problem are studied in a linear-cubic potential with a time-changing external force driven by a Gaussian white noise. First, the escape rate in the absence of SRPs is obtained by Kramers' theory. For the random potential case, we simplify the escape rate by multiplying the escape rate of smooth potentials with a specific coefficient, which is to evaluate the influences of randomness. Based on this assumption, the escape rates are derived in two scenarios, i.e., small/large correlation lengths. Consequently, the first passage time distributions (FPTDs) are generated for both smooth and random potential cases. We find that the position of the maximal FPTD has a very good agreement with that of numerical results, which verifies the validity of the proposed approximations. Besides, with increasing the correlation length, the FPTD shifts to the left gradually and tends to the smooth potential case. Second, we investigate the most probable passage time (MPPT) and mean first passage time (MFPT), which decrease with increasing the correlation length. We also find that the variation ranges of both MPPT and MFPT increase nonlinearly with increasing the intensity. Besides, we briefly give constraint conditions to guarantee the validity of our approximations. This work enables us to approximately evaluate the influences of the correlation length of SRPs in detail, which was always ignored previously.
Keyphrases
  • human health
  • climate change
  • computed tomography
  • blood pressure
  • air pollution
  • body composition
  • single molecule
  • neural network