Login / Signup

Improvement of hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size.

Ryo KosakaDaisuke SakotaMasahiro NishidaOsamu MaruyamaTakashi Yamane
Published in: Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs (2021)
We have developed a hydrodynamically levitated centrifugal blood pump. In the blood pump having hydrodynamic bearings, the narrow bearing gap has a potential for high hemolysis. The purpose of the this study is to improve hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size. The impeller was levitated passively at the position where the thrust forces acting on the impeller were balanced. We focused on a size of a bottom shroud with a hydrodynamic bearing that could change the bottom hydrodynamic force to balance the thrust force at the wide bearing gap for reducing hemolysis. Five test models with various shroud size were compared: 989 mm2 (HH-10.5), 962 mm2 (HH-12), 932 mm2 (HH-13.5), 874 mm2 (HH-16), and 821 mm2 (HH-18). A numerical analysis was first performed to estimate the bearing gaps in the test model. The bearing gaps were then measured to validate the numerical analysis. Finally, an in vitro hemolysis test was performed. The numerical analysis revealed that the HH-13.5 model had the widest bearing gap of 129 µm. In the measurement test, the estimation error for the bearing gap was less than 10%. In the hemolysis test, the HH-13.5 model achieved the lowest hemolysis level among the five models. The present study demonstrated that the numerical analysis was found to be effective for determining the optimal should size, and the HH-13.5 model had the optimal shroud size in the developed hydrodynamically levitated centrifugal blood pump to reduce hemolysis.
Keyphrases
  • red blood cell
  • climate change
  • single cell