Login / Signup

Irreversible colorimetric bio-based curcumin bilayer membranes for smart food packaging temperature control applications.

Ariane PereiraMaria A MarquesJoaquim AlvesMaria MoraisJoana FigueiraJoana Vaz PintoFelismina Teixeira Coelho Moreira
Published in: RSC advances (2024)
Research into innovative food safety technologies has led to the development of smart packaging with embedded chemical sensors that can monitor food quality throughout the supply chain. Thermochromic materials (TM), which are able to dynamically change colour in response to temperature fluctuations, have proven to be reliable indicators of food quality in certain environments. Natural colourants such as curcumin are becoming increasingly popular for smart packaging due to their low toxicity, environmental friendliness and ability to change colour. The innovation in this research lies in the production of a bio-based bilayer membrane specifically designed for irreversible temperature monitoring. Membrane A was prepared by dissolving cellulose acetate and curcumin in acetone at room temperature, with glycerol serving as a plasticiser. At the same time, membrane B was carefully formulated by dissolving cellulose acetate and triethanolamine in acetone, with sorbitol as plasticiser. The preparation of these different membranes revealed a remarkable event: a gradual and irreversible colour transition from an initial yellow to a brick-red hue after 24 hours of storage at 25 °C. The chemical structure and morphological analyses of the membranes were performed using several techniques, including FTIR, DSC and SEM. The membrane labels were adhered to aluminium cans and their colorimetric response was observed over a period of 10 days. Minimal colour variations were observed, confirming the reproducibility and stability of the curcumin-based membranes as temperature sensors.
Keyphrases