Login / Signup

Investigating Time-Dependent Active Motion of Janus Micromotors using Dynamic Light Scattering.

Alex McGlassonLaura C Bradley
Published in: Small (Weinheim an der Bergstrasse, Germany) (2021)
Advances in fabrication methods have positioned Janus micromotors (JMs) as candidates for use as autonomous devices in applications across diverse fields, spanning drug delivery to environmental remediation. While the design of most micromotors is straightforward, the non-steady state active motion exhibited by these systems is complex and difficult to characterize. Traditionally, JM active motion is characterized using optical microscopy single particle tracking for systems confined in 2D. Dynamic light scattering (DLS) offers an alternative high-throughput method for characterizing the 3D active motion in bulk JM dispersions with additional capabilities to quantify time-dependent behavior for a broader range of JM sizes. Here, the active motion of spherical JMs is examined by DLS and it is demonstrated that the method enables decoupling of the translational and rotational diffusion. Systematic studies quantifying the time-dependent diffusive properties as a function of fuel concentration, JM concentration, and time after fuel addition are presented. The analyses presented in this work position DLS to facilitate future advances of JM systems by serving as a fast-screening characterization method for active motion.
Keyphrases
  • high speed
  • high throughput
  • drug delivery
  • high resolution
  • single molecule
  • risk assessment
  • single cell