Login / Signup

Impact of Local Electrostatics on the Redox Properties of Tryptophan Radicals in Azurin: Implications for Redox-Active Tryptophans in Proton-Coupled Electron Transfer.

Kristin J TysonAmanda N DavisJessica L NorrisLibero J BartolottiEli G HvastkovsAdam R Offenbacher
Published in: The journal of physical chemistry letters (2020)
Tyrosine and tryptophan play critical roles in facilitating proton-coupled electron transfer (PCET) processes essential to life. The local protein environment is anticipated to modulate the thermodynamics of amino acid radicals to achieve controlled, unidirectional PCET. Herein, square-wave voltammetry was employed to investigate the electrostatic effects on the redox properties of tryptophan in two variants of the protein azurin. Each variant contains a single redox-active tryptophan, W48 or W108, in a unique and buried protein environment. These tryptophan residues exhibit reversible square-wave voltammograms. A Pourbaix plot, representing the reduction potentials versus pH, is presented for the non-H-bonded W48, which has potentials comparable to those of tryptophan in solution. The reduction potentials of W108 are seen to be increased by more than 100 mV across the same pH range. Molecular dynamics shows that, despite its buried indole ring, the N-H of W108 hydrogen bonds with a water cluster, while W48 is completely excluded from interactions with water or polar groups. These redox properties provide insight into the role of the protein in tuning the reactivity of tryptophan radicals, a requirement for controlled biological PCET.
Keyphrases
  • electron transfer
  • amino acid
  • molecular dynamics
  • protein protein
  • binding protein
  • gene expression
  • density functional theory
  • dna methylation
  • small molecule