Implementation of a Sponge-Based Flexible Electronic Skin for Safe Human-Robot Interaction.
Kun YangXinkai XiaFan ZhangHuanzhou MaSheng-Bo SangQiang ZhangJianlong JiPublished in: Micromachines (2022)
In current industrial production, robots have increasingly been taking the place of manual workers. With the improvements in production efficiency, accidents that involve operators occur frequently. In this study, a flexible sensor system was designed to promote the security performance of a collaborative robot. The flexible sensors, which was made by adsorbing graphene into a sponge, could accurately convert the pressure on a contact surface into a numerical signal. Ecoflex was selected as the substrate material for our sensing array so as to enable the sensors to better adapt to the sensing application scenario of the robot arm. A 3D printing mold was used to prepare the flexible substrate of the sensors, which made the positioning of each part within the sensors more accurate and ensured the unity of the sensing array. The sensing unit showed a correspondence between the input force and the output resistance that was in the range of 0-5 N. Our stability and reproducibility experiments indicated that the sensors had a good stability. In addition, a tactile acquisition system was designed to sample the tactile data from the sensor array. Our interaction experiment results showed that the proposed electronic skin could provide an efficient approach for secure human-robot interaction.