Multisensory perception depends on the reliability of the type of judgment.
Christoph KayserHerbert HeuerPublished in: Journal of neurophysiology (2024)
The brain engages the processes of multisensory integration and recalibration to deal with discrepant multisensory signals. These processes consider the reliability of each sensory input, with the more reliable modality receiving the stronger weight. Sensory reliability is typically assessed via the variability of participants' judgments, yet these can be shaped by factors both external and internal to the nervous system. For example, motor noise and participant's dexterity with the specific response method contribute to judgment variability, and different response methods applied to the same stimuli can result in different estimates of sensory reliabilities. Here we ask how such variations in reliability induced by variations in the response method affect multisensory integration and sensory recalibration, as well as motor adaptation, in a visuomotor paradigm. Participants performed center-out hand movements and were asked to judge the position of the hand or rotated visual feedback at the movement end points. We manipulated the variability, and thus the reliability, of repeated judgments by asking participants to respond using either a visual or a proprioceptive matching procedure. We find that the relative weights of visual and proprioceptive signals, and thus the asymmetry of multisensory integration and recalibration, depend on the reliability modulated by the judgment method. Motor adaptation, in contrast, was insensitive to this manipulation. Hence, the outcome of multisensory binding is shaped by the noise introduced by sensorimotor processing, in line with perception and action being intertwined. NEW & NOTEWORTHY Our brain tends to combine multisensory signals based on their respective reliability. This reliability depends on sensory noise in the environment, noise in the nervous system, and, as we show here, variability induced by the specific judgment procedure.