Chemical waves in the O2 + H2 reaction on a Rh(111) surface alloyed with nickel. I. Photoelectron emission microscopy.
Tim SmolinskyBernhard von BoehnRonald ImbihlPublished in: The Journal of chemical physics (2018)
Chemical waves that arise in the H2 + O2 reaction on a bimetallic Rh(111)/Ni surface have been studied in the 10-6 and 10-5 mbar range at T = 773 K with photoelectron emission microscopy (PEEM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). Nickel coverages of 0.3, 0.6, and 1.0 monolayers were investigated. Coadsorbed with some oxygen, Ni starts to penetrate the Rh bulk region substantially only beyond 900 K. In the 10-5 mbar range, chemical waves are characterized by three distinct gray levels in PEEM. This number reduces to only two levels in the 10-6 mbar range. In situ LEED showed the periodic appearance of a (n × 1) (n = 8, 10) pattern during chemical waves which was assigned to a 2D-Ni oxide. With in situ AES, one observes that the bright phase in PEEM correlates with a high Ni coverage and the dark phase with a low Ni coverage.