Login / Signup

An Innovative Methodology to Characterize, at the Molecular Scale, Interactions in Polysaccharide Aqueous Solutions.

Alexandre CordinierIgor PetukhovNicolas HucherMichel Grisel
Published in: Molecules (Basel, Switzerland) (2024)
Characterizing molecular interactions at the microscopic level remains difficult and, therefore, represents a key target to better understand macromolecule and biomacromolecule behaviors in solution, alone, or in mixtures with others. Therefore, accurate characterization in liquid media, especially in aqueous solutions, without causing any perturbation of the system in which they are studied, is quite difficult. To this purpose, the present paper describes an innovative methodology based on fluorescence spectrophotometry. Two molecular fluorescent probes, namely 8-anilino-1-naphtalenesulfonic acid (ANS) and 2-benzofuryl-3-hydroxy-4(1H)-quinolone (3HQ-Bf), were selected to characterize, respectively, the dipole-dipole interactions and hydrophobic micro-domains, for the first one, and hydrogen bonding, for the second. As a support to study molecular interactions, xanthan, galactomannan, and corresponding mixtures of these substances which are well known to exhibit a synergy of interactions in well-defined mixture conditions were chosen. Once the methodology was set up, the existence of the three types of interactions in these systems was demonstrated, thus allowing the elucidation of the mechanisms of interactions at the molecular scale.
Keyphrases
  • single molecule
  • ionic liquid
  • small molecule
  • drinking water
  • mass spectrometry
  • quantum dots
  • energy transfer