Crab-on-a-Tree: All Biorenewable, Optical and Radio Frequency Transparent Barrier Nanocoating for Food Packaging.
Taehyung KimThang Hong TranSung Yeon HwangJeyoung ParkDongyeop X OhByeong-Su KimPublished in: ACS nano (2019)
Plastic packaging effectively protects foods from mechanical, microbial, and chemical damage, but oxygen can still permeate these plastics, degrading foods. Improving the gas barrier usually requires metallic or halogenated polymeric coatings; however, both cause environmental concerns and metallic coatings block visible light and electromagnetic signals. This paper reports a design of a highly flexible, visible light and radio frequency transparent coating on commercial poly(ethylene terephthalate) (PET) film. Nanoscale blending was achieved between negatively charged cellulose nanofibers and positively charged chitin nanowhiskers by employing spray-assisted layer-by-layer assembly. Synergetic interplay between these highly crystalline nanomaterials results in a flexible film with superior barrier characteristics. The oxygen transmission rate was below 0.5 mL m-2 day-1. Moreover, this coating maintains its performance even when exposed to common hazards such as bending stress and hydration. The coating also notably reduces the haziness of PET with a negligible loss of transparency and provides effective inhibition of antibacterial growth. This "crab-on-a-tree" nanocoating holds high potential for biorenewable and optical and radio frequency transparent packaging applications.
Keyphrases
- visible light
- room temperature
- human health
- high resolution
- computed tomography
- pet ct
- positron emission tomography
- high speed
- oxidative stress
- microbial community
- drug delivery
- pet imaging
- silver nanoparticles
- risk assessment
- light emitting
- adverse drug
- cancer therapy
- stress induced
- climate change
- anti inflammatory
- solid state
- drug induced
- aqueous solution
- electronic health record
- heat stress