Login / Signup

Crystallization Kinetics of Hybrid Perovskite Solar Cells.

Zhiwei WuShuyang SangJunjian ZhengQin GaoBin HuangFeng LiKuan SunShanshan Chen
Published in: Angewandte Chemie (International ed. in English) (2024)
Metal halide perovskites (MHPs) are considered ideal photovoltaic materials due to their variable crystal material composition and excellent photoelectric properties. However, this variability in composition leads to complex crystallization processes in the manufacturing of Metal halide perovskite (MHP) thin films, resulting in reduced crystallinity and subsequent performance loss in the final device. Thus, understanding and controlling the crystallization dynamics of perovskite materials are essential for improving the stability and performance of PSCs (Perovskite Solar Cells). To investigate the impact of crystallization characteristics on the properties of MHP films and identify corresponding modulation strategies, we primarily discuss the relevant aspects of MHP crystallization kinetics, systematically summarize theoretical methods, and outline modulation techniques for MHP crystallization, including solution engineering, additive engineering, and component engineering, which helps highlight the prospects and current challenges in perovskite crystallization kinetics.
Keyphrases
  • perovskite solar cells
  • solar cells
  • room temperature